
EXPLORATION ZONE IN THE NEWTON CRATER Workshop Abstract #1015

LAINE P.E. UNIVERSITY OF JYVASKYLA,
FINLAND

Exploration Zone Map

1st EZ Workshop for Human Missions to Mars

Science ROI(s) Rubric

1st EZ Workshop for Human Missions to Mars

				Site Factors	SR011	SR012	SROI3	SR014	RR011	RR012	RROI3	EZ SUM	
	oic	Threshold	J/OR	Potential for past habitability	0	•	•	0	0	•	0	3,4	
	Astrobio	Timesiloid	ANE	Potential for present habitability/refugia	•	0	0	0	•	0	0	2,5	
	As	Qualifying		Potential for organic matter, w/ surface exposure	0	0	0	0	0	0	0	0,7	
	Science	Threshold		loachian/Hesperian rocks w/ trapped atmospheric gases	0	0	0	0	0	0	0	0,7	
	Scie			Meteorological diversity in space and time	•	•	•	•	•	•	•	7,0	
_	neric			High likelihood of surface-atmosphere exchange	•	0	0	0	•	0	0	2,5	
Criteria	Atmospheric			Amazonian subsurface or high-latitude ice or sediment	•	0	0	0	•	0	0	2,5	
Crit	Atm			High likelihood of active trace gas sources	•	?	?	0	•	?	?	2,1	
Site (Range of martian geologic time; datable surfaces	•	•	•	•	•	•	•	7,0	
		Threshold		Evidence of aqueous processes	•	•	•	0	•	•	•	6,1	
Science				Potential for interpreting relative ages	•	•	•	•	•	•	•	7,0	
Scie	e			Igneous Rocks tied to 1+ provinces or different times	?	?	?	?	?	?	?		
•	cien			Near-surface ice, glacial or permafrost	•	0	0	0	•	0	0	2,5	
	Geoscience			Noachian or pre-Noachian bedrock units	0	0	0	0	0	0	0	0,7	
		Qualifying		Outcrops with remnant magnetization	?	?	?	?	?	?	?		
				Primary, secondary, and basin-forming impact deposits	•			•	•			3,0	
				Structural features with regional or global context	•				•			2,0	
				Diversity of aeolian sediments and/or landforms		•	•	0		•	0	3,2	

Key							
Yes							
0	Partial Support or Debated						
	No						
?	Indeterminate						

Resource ROI(s) Rubric

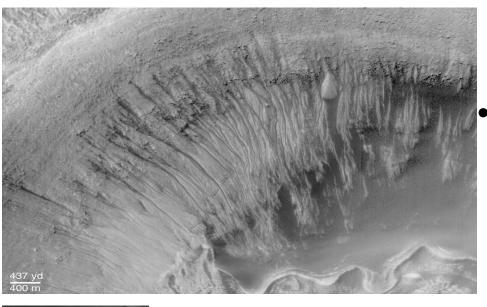
W	orl/	ksho	p for	Hu	man	ıМ	iss	ions	to	N	lars
---	------	------	-------	----	-----	----	-----	------	----	---	------

			Site Factors	SROI	SROI	SROI	SROI	RROI	RROI	RROI	EZ SU
	En	gineering	Meets First Order Criteria (Latitude, Elevation, Thermal Inertia)	•	•	•	•	•	•	•	7,0
			Potential for ice or ice/regolith mix	•	0	0	0	•	0	0	2,5
			Potential for ice or ice/regolith mix Potential for hydrated minerals	•	0	0	0	•	0	0	2,5
	r Resource	Threshold	Quantity for substantial production	•	0	0	0	•	0	0	2,5
			Potential to be minable by highly automated systems	•	0	0	0	•	0	•	3,4
,			Located less than 3 km from processing equipment site							•	1,0
			Located no more than 3 meters below the surface	0	0	0	0	0	0	0	0,7
,	Water		Accessible by automated systems		•		•			•	3,0
	Š		Potential for multiple sources of ice, ice/regolith mix and hydrated minerals	0	0	0	0	0	0	0	0,6
		Qualifying	Distance to resource location can be >5 km							•	1,0
ח :			Route to resource location must be (plausibly) traversable	•	•	•	•	•	•	•	7,0
,	Engineering		~50 sq km region of flat and stable terrain with sparse rock distribution	•	•	•	•	•	•	•	7,0
Ó	е т	Threshold	1-10 km length scale: <10°	•	•	•	•	•	•	•	7,0
	gin		Located within 5 km of landing site location							•	1,0
"	En		Located in the northern hemisphere								0,0
i	Civil	Qualifying	Evidence of abundant cobble sized or smaller rocks and bulk, loose regolith	?	?	?	?	?	?	?	0,0
	Ċ		Utilitarian terrain features	•	•		•	•		•	5,0
	nc		Low latitude								0,0
	od ctic	0	No local terrain feature(s) that could shadow light collection facilities	•	•		•	•		•	5,0
	Food Production	Qualifying	Access to water	•	0	0	0	•	0	0	2,5
	P		Access to dark, minimally altered basaltic sands	?	?	?	?	?	?	?	0,0
			Potential for metal/silicon	0	0	0	0	0	0	0	0,7
)	L		Potential to be minable by highly automated systems		•		•			•	3,0
•	Metal/Silicon Resource	Threshold	Located less than 3 km from processing equipment site							•	1,0
	Sil		Located no more than 3 meters below the surface	?	?	?	?	?	?	?	0,0
	etal/Silico Resource		Accessible by automated systems		•		•			•	3,0
	Met R		Potential for multiple sources of metals/silicon	0	0	0	0	0	0	0	0,7
		Qualifying	Distance to resource location can be >5 km							•	0,1
			Route to resource location must be (plausibly) traversable	•	•	•	•	•	•	•	7,0

ISRU and Civil Engineering Criteria

Key							
•	Yes						
0	Partial Support or Debated						
	No						
?	Indeterminate						

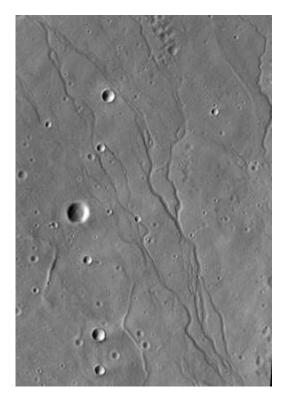
[in order of priority: addressing threshold first, then qualifying]

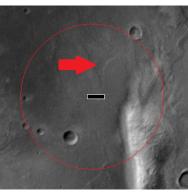

SCIENCE ROIS

Science ROI 1

Lst EZ Workshop for Human Missions to Mars

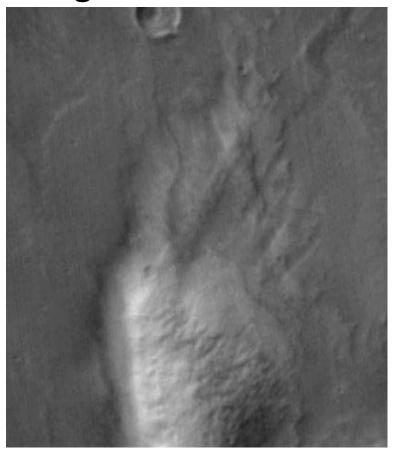
Image of SROI 1



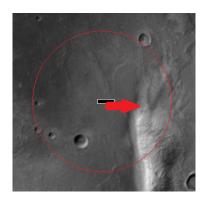

- 40.7° S / 200.3° E,
 altitude ~ -2 km, MOC,
 HiRISE
 - Visible gullies: Evidence of present aqueous processes -> Potential for present habitability/refugia

1st EZ Workshop for Human Missions to Mars

Image of SROI 2


- 40.2° S / 200.8° E, altitude ~ -2 km, THEMIS
- Channels: Evidence of aqueous processes -> Potential for past habitability

Science ROI 3



1st EZ Workshop for Human Missions to Mars

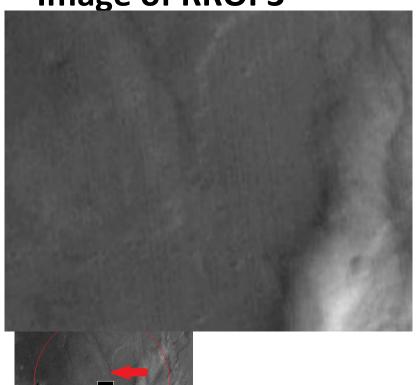
Image of SROI 3

- 40.3° S / 201 E, altitude
 -2 km, THEMIS
- Bulge, probable sediment from aqueous processes -> Potential for past habitability

1st EZ Workshop for Human Missions to Ma

Image of SROI 4

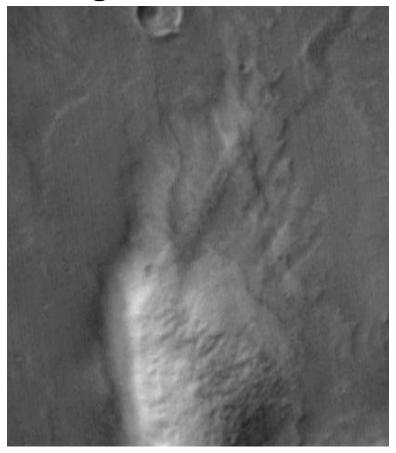
- 40.5° S / 199.6 E, altitude $^{\sim}$ -2 km, THEMIS
- Three craters of different age in the slide of the Newton Crater, revealing layers from different eras
 -> Potential for interpreting relative ages


[in order of priority: addressing threshold first, then qualifying]

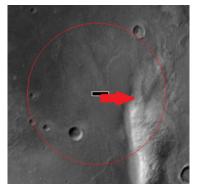
RESOURCE ROIs

1st EZ Workshop for Human Missions to Ma

Image of RROI 3


- 40.4° S / 200.5 E, altitude ~ -2 km, THEMIS
- Channels: Evidence of aqueous processes -> Potential for ice or ice/regolith mix & potential for metal/silicon, located less than 3 km from processing equipment site and accessible by automated systems

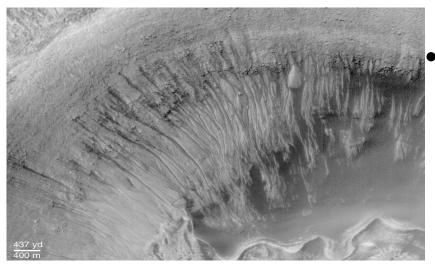
Resource ROI 2



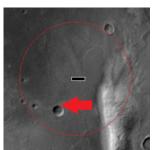
1st EZ Workshop for Human Missions to Ma

Image of RROI 2

- 40.3° S / 201 E, altitude ~ -2 km, THEMIS
- Bulge, probable sediment from aqueous processes -> Potential for ice or ice/ regolith mix & potential for metal/silicon



Resource ROI 1



1st EZ Workshop for Human Missions to Mars

Image of RROI 1

- 40.7° S / 200.4° E, altitude ~
 -2 km, MOC, HiRISE
 - Visible gullies: Evidence of present aqueous processes -> Potential for ice or ice/regolith mix for substantial production

RUBRICS

1st EZ Workshop for Human Missions to Mai

- Science potential
 - Noachian/Hesperian rocks that have likelihood of containing trapped atmospheric gases: Only threshold criterion for Atmospheric Science
- Resource potential
 - Potential for usable metal/silicon: metal/ silicon concentration poorly known

BACKUP SLIDES

1st EZ Workshop for Human Missions to Ma

- Orbiter/rover data to be collected to assess the science potential of the EZ:
 - More high resolution imaging (HiRISE) of EZ to assess all ROIs' threshold criteria
- Orbiter/rover data to be collected to assess the resource potential of the EZ:
 - More accurate gamma ray spectroscopy (GRS) to assess metal/silicon concentrations of resource ROIs